Reading Aloud in Math Class

So I’ve been informally experimenting with the effect of reading aloud in math class.


Many years ago, I noticed that when a student couldn’t get started on a task on their own, they’d raise their hand and claim “I don’t know what to do.”  I would ask, “Well, what did the problem say?”  The student would then answer, “I don’t know.”  My next step would then be to read the problem aloud and ask “What do you think you’re supposed to do?”  The student would respond to this question…and most often with the correct response.

I didn’t need to ask the students any questions related to the math at hand.  They just needed to hear the problem aloud.

I started to pay attention to this back and forth that I would have with countless numbers of students.  And then began to explore the question-what if they read aloud to themselves???

An eight grade honors level student came to find me because she couldn’t figure out a problem she had on an assignment.  I said read the problem.  She said “I already did.”  I asked her to read it aloud to me.  I could see the lightbulb go off when she finished and she asked “Am I supposed to _______?” And she was correct!

Two nights ago, my fourth grader that was accepted into the STEM program in our district, was working on an online assignment in the other room.  He came out to my husband and I and asked for help because he was stuck.  He sat down next to my husband and began reading the problem out loud to him.  As soon as he finished, he said, “Oh, never mind! I know what to do.”

I’ve noticed that I will often put my fingers on my ears and read-aloud in a whisper if I’m trying to double check the words that I’ve written.  It’s helpful to hear myself.  How can we explore this more with students?  How can we incorporate this in our classrooms?

I did a quick search attempting to find research on this topic.  I noted this article about reading aloud for English language learners.  But what was interesting was this:

Screen Shot 2016-09-03 at 1.10.41 PM

I’m interested in researching this further and would definitely love to know if anyone has had similar experiences with their students.

Barbie Bungee Implementation

I think that there are a million and one ways you can do almost anything.  Dan Meyer tweeted this out the other day…

I was quick to comment.

I think it’s important to note that I work most closely with 8th grade (on grade level) students.

After seeing the subsequent comments…I wanted to add that IMPLEMENTATION can be more than just here’s your worksheet, “get on with it.”

I like to lead up with this…

barbie bungee one

Can you guess what their answer is???

Then I show them this…

barbie bungee two

Of course this changes their answer.

Then I move onto this…

barbie bungee three.PNG

And I have students come up to put a point…usually around a y-value of about 10 or so.

Then, I click to reveal additional points.

barbie bungee four

The point is…I make the point that collecting multiple pieces of data helps to make better predictions.  I also ask the question about what mathematical models can we create to help make predictions in math.

Their answers:

  • Graphs
  • Tables
  • Equations

Just what I want.

Then I show one of the many videos that you can find on YouTube.

The last thing I do is pass out a worksheet.



Elementary Observations from a Secondary Math Teacher

Here is the interaction that I had with my 5th grade son yesterday:

Me: “What does 6 ÷ 2 mean?”

Son: “Six split into two equal groups.”

Me: “What else could 6 ÷ 2 mean?”

Son: [crickets]

Me: “…how many groups of two are in six… so…what does 6 ÷ ½ mean?”

Son: “…how many groups of one-half are in six…12.”

Me: “What is 6 ÷ ¼?”

Son: “…how many groups of one-fourth are in six…24.  I remember this every time you remind me…but I always forget.”

My son is very strong with fractions, and he’ll go straight to invert and multiply if I let him.  I often engage him in this same conversation…working on the understanding of dividing a whole number by a unit fraction because I know how difficult division of fractions can be for students.

My hypothesis is that it has to do with the two interpretations of division:

(a) How many groups?                      and                     (b) How many in each group?

***At this point…I will hope that elementary people will tell me I’m wrong if I’m wrong…

I began teaching Math for Teachers at the local college (St. Mary’s College of Maryland~my alma mater) two years ago.  I use Sybilla Beckmann’s Math for Elementary Teachers fourth edition for this course.

The first activity for the division unit is this:

Write a simple word problem and make a math drawing that you could use to help children understand what 10 ÷ 2 means.

Each year I’ve taught this course EVERY single student wrote a how many in each group problem.  This is called the sharing model of division.

I think it’s less natural for students to consider the how many groups (or measurement model) interpretation of division.  But it seems that this is the model that makes the most sense for the division of fractions.

I think this less familiar interpretation of division can also impact a student’s ability to be successful with long division.

Screen Shot 2016-06-05 at 1.01.19 PM

A student needs to be able to think, “How many groups of 30 are in 1429??”

I think it’s important to be purposeful with the language we’re using with students, and how we are exposing them to different interpretations of division specifically.  Secondary math teachers can learn A LOT by digging into the elementary material.

Learning from a 5th Grade Math Team

When my oldest child entered kindergarten I wanted a way to volunteer my time at the school, so I began coaching the 5th grade math team.  I saw this as an opportunity to better understand the math that elementary students bring with them to middle school. The elementary school that my children attend is a feeder school to my middle school.

I used the set of resources provided by the school system to train my mathletes that year. One problem I tasked them with was titled Kicking Tees below:

Screen Shot 2016-04-09 at 1.13.11 PM

I didn’t attempt this problem before giving it to the students that day.  I watched as they solved it…easily handling #1, skipping #2, and then answering #3.  In my mind I thought, “Wow! I’d create an equation to solve #2…how would a 5th grader figure this out?”

I can’t be too dissimilar from other secondary certified teachers, where an algebraic approach is the first that comes to mind.  It took me a few moments to think about using a table, or simply guessing and testing given the boundaries offered by the answers to #1 and #3.

This was a revelation for me though…That students might have skills to approach problems in which I’d use a more sophisticated method.

I was curious about what a 7th grade Algebra class in the midst of learning about systems of equations might do with this problem.

They did the EXACT same thing that the 5th graders did~they skipped #2!

This began my thinking about the intersection between the teaching of content, skill, and strategy.  And the connection between elementary math and algebraic thinking.

I used this problem solving experiment to talk with the 7th grade students about math learning and about the connection between arithmetic and algebra.

For teachers, this highlights the importance of horizontal content knowledge

“a kind of mathematical ‘peripheral vision’ needed in teaching, a view of the larger mathematical landscape that teaching requires”

“According to Ball and Bass (2009), HCK is an awareness of where and how the mathematics being taught fits into the structures and hierarchies of shared collective mathematical knowledge. This awareness serves both to engage students and to provide meaning to the present mathematical experience”

Further, this article reports

“The teachers in our study seemed to be more concerned about the mathematical content at the level they were teaching than the broader (more advanced) mathematical context—which can be referred to as the mathematical horizon”

It’s become incredibly important for me in the work that I do with teachers, to help them see how the math that they are teaching fits into the learning the students do across a mathematical spectrum.

…in addition to helping teachers see the importance of this “horizontal content knowledge” as a way to create instruction that engages, inspires, and makes math a meaningful, connected body of work.


Mosvold, R., & Fauskanger, J. (n.d.). Teachers’ Beliefs about Mathematical Horizon Content Knowledge. Retrieved May 27, 2016, from


Noticing Subtleties…Reflection

So I wrote this post yesterday, and today we tried it out.

The purpose was to give students an opportunity to notice the subtleties in the language associated with three different mathematical scenarios they may need to represent.

We read each scenario out loud and then asked the students to compare and contrast each problem type with their table partner.

Some students began by discussing the similarities and differences of the contexts…noticing subtleties 1

Others began by making a list of what they noticed on the back…You can see that this student paid attention to more of the mathy parts~understanding what was meant by a one-variable versus a two variable equation.

noticing subtleties 2


And then you’ll see below where students were able to make sense of each scenario and the math required.  However, the first student used an equation in two variables for the first scenario and created a table to find the solution.

We didn’t get to the whole class conversation part of this lesson…I want to talk about each problem type and how to recognize the differences.  Notice that two of the students above wrote the equation for the two variable scenario, but the third student created a table.  I think we need to talk about why that is.  Also, I think I may want to do three more scenarios that would produce equations in standard form, to see if they would recognize the differences then.

I definitely think that this was a useful exercise and would do it again.

One little shout out…one student pulled out their phone because they wanted to check out the equations for the third scenario on their Desmos app!!!


Teach Math as a Story


I had the opportunity recently to complete peer observations outside of my content area. I scheduled a half day of observations with a sixth grade social studies teacher new to our building.  We observed in two eighth grade social studies classrooms and one sixth grade classroom.

If you’ve never observed outside of your content area I highly recommend it.  I think it forced me to pay closer attention to the general instructional practices, rather than focusing in on the content.

In the sixth grade classroom the teacher began by reviewing what the students discussed in the previous class.  They were in the middle of learning about Julius Caesar and the fall of the Roman Republic. The students eagerly answered her questions and were incredibly engaged with the “story” she was telling.

I was engaged with the story, intrigued by the cast of characters and happenings that she described.  The students were making predictions about what would happen next and the teacher responded, “just wait…maybe we’ll see today…”

The students knew the characters in this story, they understood how they related, they recalled the parts of the story that were told to them in the previous class, they made predictions about what would happen next. The teacher also knew this story, oh so well, that she could add on interesting and important details and maintain the curiosity that she had sparked.

I wondered…can we teach math as a story?

I decided to Google “Teach Math as a Story” and the first result was this.

Screen Shot 2016-04-30 at 9.21.49 PM

It is an excerpt from a book and it’s mostly about using stories in the math classroom, but it has useful think-a-bouts like this…

“In our description of how to teach mathematics, we are not concerned with fictional stories about the topic, but rather we are concerned with how we can shape the topic to enhance its attraction to students. In doing this, we will not be falsifying anything, or giving precedence to entertaining students over educating them. Instead, we will be engaging them. We see engaging students with mathematical activity as a crucial aspect of successful education as, and it is the real vividness and importance of this subject in which we want to engage students.

In summary, the great power of stories, according to Kieran Egan (1986, 2004, 2008), is in their dual mission: they communicate information in a memorable form and they shape the hearer’s feelings about the information being communicated.”

I did some additional searching through Peter Liljedahl’s work and found this interesting article that seems related to what teacher planning might look like in order to teach math as a story.

Screen Shot 2016-04-30 at 9.48.07 PM

In this article, Zazkis and Liljedahl contrast a typical lesson plan to what they’ve termed a lesson play.

“In terms of the pedagogical features of the lesson play, we wish to draw attention to some aspects of its format. The structure of the lesson play – as a dialogue occurring overtime with possibilities for different points of view – allows for the portrayal of the messy, sometimes repetitive interactions of a classroom. This structure stands in stark contrast to a necessarily ordered and simplified list of actions such as: take up homework, state definition, provide examples,give problems, and evaluate solutions.”

Crafting a lesson play provides for the improvised interactions that may occur with teaching math as a story-being able to respond and shift according to responses from students.

I don’t think any of this is dissimilar from the ideas in books such as 5 Practices,  but I now have a different analogy that I’m considering. As I continue the thinking that I’ve started here, I want to keep in mind these things in terms of how I work with the math teachers in my building:

  1. On the macro level-How can I help teachers to tell the math story as a set of interconnected ideas and concepts?
  2. On the micro level-How can I help teachers to consider a lesson play, so that the day to day story is just as interesting as the year long story they are telling? How do we get students to want more?


Thinking about Feedback

There have been some really great posts lately about how teachers are giving feedback on assessments.  You could read this post here by Nathan Kraft or this post here by Fawn Nguyen.  Also, there is a great Teaching Channel video on highlighting mistakes as a grading practice for you to watch here.

All of these posts show the power of the highlighter.

A strategy that I started using last year involves the highlighter…but in a different way.

Problem-Attic  is a resource I’ve been using to create weekly assessments.  I wanted to figure out a way to help students to be more independent in identifying and revising mistakes.

I decided to turn each problem from the assessment into its own one page station where I highlighted important features and made notes of important think-abouts.  For the most part…these related to common misconceptions or careless errors.

IMG_2417 FullSizeRender

Students then had the opportunity to work around the room and read the “hints” that were provided in order to revise their work.  Some of my hints were probably too “hinty,” but it was a starting point for a process that I was working out.

I did this with 8th grade-on grade level students.

Students reported liking the process–and were able to figure out their errors independently of me.

I’m hoping to refine this process this year.